
UMCM: One Institution’s Implementation
Experience with Kuali Curriculum

Management

Michelle Appel – Functional Lead| UMD, College Park

Joseph Drasin – Project Manager| UMD, College Park

Garey Taylor – Technical Lead| UMD, College Park

University of Maryland

 Large “flagship” University
 12 Colleges, over 100 departmentsg , p
 150+ programs of study, depending on definition
 26,000+ undergraduates, 10,000+ grad students
 8 000 l i l di 1 500 T/Tk f lt ~8,000 employees including ~ 1,500 T/Tk faculty

 Growing Kuali Community on campus
 Rice & COEUS in production Rice & COEUS in production
 KFS & OLE in early stages

 Legacy, homegrown SIS on a mainframeg y, g
 Challenges with ability to sustain expertise on technology
 Difficulty continuing to meet changing campus needs

Project Introduction

 Team based in College Park, MD, South Africa, and
Vancouver, BC

 KS 1 2 codebase KS 1.2 codebase
 Fixed issues for 1.2.1
 Going live with 1.2.1 with UM overlay

 Focused year 1 implementation on course proposal
and approval
 Create a courseCreate a course
 Modify a course
 Retire a course
 W kfl Workflow
 Authorization
 Dependency analysis

Project Timeline
 Major Milestones
 7/21/2011 Project Kickoff
 8/26/2011 Milestone 0 “Infrastructure”
 3: two week sprints

 11/1/2011 Milestone 1 “The Plumbing”
 4: two week sprints (1 week QA)

 12/13/2011 Milestone 2 “Soft Launch” 12/13/2011 Milestone 2 Soft Launch
 2: two week sprints (1 week QA)

 1/31/2012 Milestone 3 “Production Build”
 3: two week sprints (4 weeks UAT)3: two week sprints (4 weeks UAT)

 3/7/2012 Go-Live

 Where are we today
 Getting ready for our pilot collegesGetting ready for our pilot colleges
 Localizing
 Retire Course by Proposal Feature
 Rules – Rules types, categories, entryRules Rules types, categories, entry

Organizational structure

 Large multi-disciplinary team

 Structural Evolution

 Current Structure
 Data Team (Functional & Technical)
 Infrastructure Team
 Software Development Team
 Functional Working Group (including UI)g p (g)
 Functional Rules Group
 Quality Assurance
 D t ti d T i i Documentation and Training

 Continual improvement

Development Methodologies

 Hybrid
 Upfront Waterfall Style Requirements Gathering
 D di t d B i A l t Dedicated Business Analysts
 Dedicated UX

• Rapid Prototyping with Azure

 Agile Style Development Agile Style Development
 Two Week Sprints
 Daily Standups
 Product Owner Priority Meetings
 Sprint Retrospectives

DEMO

KS Landing Page

New color scheme, navigation menu moved

CM Landing Page

Create a Course – Course Information

Changes in headings,
configured & additional fields

Create a Course – Governance

Maryland data, constrained values

Create a Course – Course Logistics

Customized values

Create a Course – Course Requisites

New Rule TypesNew Rule Types

Where We’re Headed

Summary of Major areas of Work

 Data work – mapping, clean-up, loading
 Localization

UI UI
 Syntax
 Fields

 Authorization setup
 Workflow
 Rules
 Configuration – types, categories
 Data entry Data entry

 Retire a course

Lessons Learned - Management

 Management
 Be Flexible
 P f th t d (t h i ll d f ti ll) Prepare for the unexpected (technically and functionally)
 High visibility, but low volume use and impact
 Set manageable (small) scope
 Set expectations

 Stick to time box
 System of record issues will need to be addressedSystem of record issues will need to be addressed

Lessons Learned - Functional

 Functional
 Data work is a huge effort – start early
 Sometimes you don't know enough to make the decisions Sometimes you don t know enough to make the decisions
 Development possibilities and directions
 Changing campus needs and business processes

S ft h f t t b t i ’t d f Software has features campus wants, but isn’t ready for
 Timing of functional input can be challenging
 “Hurry up and wait”
 Dedicated analysis time

 Find forgiving functional users – testers, pilot users
 Be open to new collaboration tools willing to adjust midstreamBe open to new collaboration tools, willing to adjust midstream
 Difficult to balance timing of training and documentation

development with software development

Lessons Learned - Technical

 Technical
 Development Methodologies
 D l t E i t S t Development Environment Setup
 Development Tools (Confluence, Jira, Bamboo)
 Local Overlay Project (Coding Environment)
 Kuali Student 1.2.1
 Server Environments

 Data Load Testingg
 Authorization

Development Tools - Confluence

 Confluence – Wiki
 Functional Documentation
 D i S Design Specs

 Developer Documentation

Development Tools - JIRA

 JIRA – Issue Tracking
 Functional Issue Tracking
 T h i l I T ki Technical Issue Tracking

Development Tools - Bamboo

 Bamboo– Continuous Integration
 Test Code Compilation
 B ild D l t A tif t Build Development Artifacts
 Test Data Load: UM->KS
 Test Deployment
 Test UI via Selenium

Local Development Environment

 Local Overlay Project
 KS 1.2.1 Base Dependency
 5 L l S b P j t 5 Local Sub Projects
 Umd-cm-cfg-dbs – DBs

• Baseline
• Developer Reference• Developer Reference

 Umd-cm-impl – Impl Overrides
 Umd-cm-rice – Rice Overlay
 Umd cm ui UI Overrides Umd-cm-ui – UI Overrides
 Umd-cm-web – WAR Deploys

KS 1.2.1

 “Special” Collaborative Patch Branch
 First Full Reference Implementation
 C iti l I Will B F d Critical Issues Will Be Found

 Collaboration Between UMD, NWU, and KS

Server Environments

 Dev
 Nightly Build – Full Data Load

 Public
 Nightly Build – Reference Impex Load

QA QA
 Manual Build – Full Data Load
 Duplicate of Production Envp
 4 KS App Servers Running Parallel

 Production
 Manual Build
 One Initial Load
 Nightly Update Loadg y p

Data Load Testing

 Tool to Populate KS Implementation with UMD Data

 Loads into KS via Web ServicesLoads into KS via Web Services
 DB to DB was deemed to complex
 Web Service Contract Stability
 Low Volume

 Full Load run every night to test iterative changes

 Production loads will only update changes

Authorization

 KS 1.1 & 1.2 Partially Implemented Authorization

 Adding Standard UI Authorization framework

 Finer grained permission checking

Questions?

Michelle Appel – mappel@umd.edupp pp @

Joe Drasin – jdrasin@umd eduJoe Drasin jdrasin@umd.edu

Garey Taylor gpt@umd eduGarey Taylor – gpt@umd.edu

